Coffee roasting in tensorflow

python
deep learning.ai
machine learning
supervised learning
logistic regression
linear regression
neural network
Author

kakamana

Published

April 28, 2023

Coffee roasting in tensorflow

This lab is about basic understanding of neuron & layers. Use of them through tensorflow and keras.

This Coffee roasting in tensorflow is part of DeepLearning.AI course: Machine Learning Specialization / Course 2: Advanced Learning Algorithms: Tensorflow implementation You will build and train a neural network with TensorFlow to perform multi-class classification in the second course of the Machine Learning Specialization. Ensure that your machine learning models are generalizable by applying best practices for machine learning development. You will build and train a neural network using TensorFlow to perform multi-class classification in the second course of the Machine Learning Specialization. Implement best practices for machine learning development to ensure that your models are generalizable to real-world data and tasks. Create and use decision trees and tree ensemble methods, including random forests and boosted trees.

This is my learning experience of data science through DeepLearning.AI. These repository contributions are part of my learning journey through my graduate program masters of applied data sciences (MADS) at University Of Michigan, DeepLearning.AI, Coursera & DataCamp. You can find my similar articles & more stories at my medium & LinkedIn profile. I am available at kaggle & github blogs & github repos. Thank you for your motivation, support & valuable feedback.

These include projects, coursework & notebook which I learned through my data science journey. They are created for reproducible & future reference purpose only. All source code, slides or screenshot are intellectual property of respective content authors. If you find these contents beneficial, kindly consider learning subscription from DeepLearning.AI Subscription, Coursera, DataCamp

Optional Lab - Simple Neural Network

In this lab we will build a small neural network using Tensorflow.
Code
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('deeplearning.mplstyle')
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from lab_utils_common import dlc
from lab_coffee_utils import load_coffee_data, plt_roast, plt_prob, plt_layer, plt_network, plt_output_unit
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

DataSet

Code
X,Y = load_coffee_data();
print(X.shape, Y.shape)
(200, 2) (200, 1)

Let’s plot the coffee roasting data below. The two features are Temperature in Celsius and Duration in minutes. Coffee Roasting at Home suggests that the duration is best kept between 12 and 15 minutes while the temp should be between 175 and 260 degrees Celsius. Of course, as temperature rises, the duration should shrink.

Code
plt_roast(X,Y)

Normalize Data

Fitting the weights to the data (back-propagation, covered in next week’s lectures) will proceed more quickly if the data is normalized. This is the same procedure you used in Course 1 where features in the data are each normalized to have a similar range. The procedure below uses a Keras normalization layer. It has the following steps: - create a “Normalization Layer”. Note, as applied here, this is not a layer in your model. - ‘adapt’ the data. This learns the mean and variance of the data set and saves the values internally. - normalize the data. It is important to apply normalization to any future data that utilizes the learned model.

Code
print(f"Temperature Max, Min pre normalization: {np.max(X[:,0]):0.2f}, {np.min(X[:,0]):0.2f}")
print(f"Duration    Max, Min pre normalization: {np.max(X[:,1]):0.2f}, {np.min(X[:,1]):0.2f}")
norm_l = tf.keras.layers.Normalization(axis=-1)
norm_l.adapt(X)  # learns mean, variance
Xn = norm_l(X)
print(f"Temperature Max, Min post normalization: {np.max(Xn[:,0]):0.2f}, {np.min(Xn[:,0]):0.2f}")
print(f"Duration    Max, Min post normalization: {np.max(Xn[:,1]):0.2f}, {np.min(Xn[:,1]):0.2f}")
Temperature Max, Min pre normalization: 284.99, 151.32
Duration    Max, Min pre normalization: 15.45, 11.51
Metal device set to: Apple M2 Pro
Temperature Max, Min post normalization: 1.66, -1.69
Duration    Max, Min post normalization: 1.79, -1.70
2023-04-29 00:38:42.451692: W tensorflow/tsl/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz

Tile/copy our data to increase the training set size and reduce the number of training epochs.

Code
Xt = np.tile(Xn,(1000,1))
Yt= np.tile(Y,(1000,1))
print(Xt.shape, Yt.shape)
(200000, 2) (200000, 1)

Tensorflow Model

Model

Let’s build the “Coffee Roasting Network” described in lecture. There are two layers with sigmoid activations as shown below:

Code
tf.random.set_seed(1234)  # applied to achieve consistent results
model = Sequential(
    [
        tf.keras.Input(shape=(2,)),
        Dense(3, activation='sigmoid', name = 'layer1'),
        Dense(1, activation='sigmoid', name = 'layer2')
     ]
)

Note 1: The tf.keras.Input(shape=(2,)), specifies the expected shape of the input. This allows Tensorflow to size the weights and bias parameters at this point. This is useful when exploring Tensorflow models. This statement can be omitted in practice and Tensorflow will size the network parameters when the input data is specified in the model.fit statement. Note 2: Including the sigmoid activation in the final layer is not considered best practice. It would instead be accounted for in the loss which improves numerical stability. This will be described in more detail in a later lab.

The model.summary() provides a description of the network:

Code
model.summary()
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 layer1 (Dense)              (None, 3)                 9         
                                                                 
 layer2 (Dense)              (None, 1)                 4         
                                                                 
=================================================================
Total params: 13
Trainable params: 13
Non-trainable params: 0
_________________________________________________________________

The parameter counts shown in the summary correspond to the number of elements in the weight and bias arrays as shown below.

Code
L1_num_params = 2 * 3 + 3   # W1 parameters  + b1 parameters
L2_num_params = 3 * 1 + 1   # W2 parameters  + b2 parameters
print("L1 params = ", L1_num_params, ", L2 params = ", L2_num_params  )
L1 params =  9 , L2 params =  4

Let’s examine the weights and biases Tensorflow has instantiated. The weights \(W\) should be of size (number of features in input, number of units in the layer) while the bias \(b\) size should match the number of units in the layer: - In the first layer with 3 units, we expect W to have a size of (2,3) and \(b\) should have 3 elements. - In the second layer with 1 unit, we expect W to have a size of (3,1) and \(b\) should have 1 element.

Code
W1, b1 = model.get_layer("layer1").get_weights()
W2, b2 = model.get_layer("layer2").get_weights()
print(f"W1{W1.shape}:\n", W1, f"\nb1{b1.shape}:", b1)
print(f"W2{W2.shape}:\n", W2, f"\nb2{b2.shape}:", b2)
W1(2, 3):
 [[ 1.58e-04  2.97e-01  5.11e-01]
 [ 5.86e-01  2.92e-01 -8.40e-01]] 
b1(3,): [0. 0. 0.]
W2(3, 1):
 [[0.96]
 [0.51]
 [1.  ]] 
b2(1,): [0.]
Code
model.compile(
    loss = tf.keras.losses.BinaryCrossentropy(),
    optimizer = tf.keras.optimizers.Adam(learning_rate=0.01),
)

model.fit(
    Xt,Yt,
    epochs=10,
)
WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.Adam` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.Adam`.
WARNING:absl:There is a known slowdown when using v2.11+ Keras optimizers on M1/M2 Macs. Falling back to the legacy Keras optimizer, i.e., `tf.keras.optimizers.legacy.Adam`.
Epoch 1/10
6250/6250 [==============================] - 20s 3ms/step - loss: 0.2095
Epoch 2/10
6250/6250 [==============================] - 20s 3ms/step - loss: 0.1314
Epoch 3/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.1206
Epoch 4/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.1102
Epoch 5/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.0308
Epoch 6/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.0147
Epoch 7/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.0099
Epoch 8/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.0069
Epoch 9/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.0050
Epoch 10/10
6250/6250 [==============================] - 19s 3ms/step - loss: 0.0036
<keras.callbacks.History at 0x2c8a85d30>

Epochs and batches

In the compile statement above, the number of epochs was set to 10. This specifies that the entire data set should be applied during training 10 times. During training, you see output describing the progress of training that looks like this:

Epoch 1/10
6250/6250 [==============================] - 6s 910us/step - loss: 0.1782

The first line, Epoch 1/10, describes which epoch the model is currently running. For efficiency, the training data set is broken into ‘batches’. The default size of a batch in Tensorflow is 32. There are 200000 examples in our expanded data set or 6250 batches. The notation on the 2nd line 6250/6250 [==== is describing which batch has been executed.

Updated Weights

After fitting, the weights have been updated:

Code
W1, b1 = model.get_layer("layer1").get_weights()
W2, b2 = model.get_layer("layer2").get_weights()
print("W1:\n", W1, "\nb1:", b1)
print("W2:\n", W2, "\nb2:", b2)
W1:
 [[-1.05e+01 -6.01e-04 -1.72e+01]
 [-2.29e-01 -8.46e+00 -1.44e+01]] 
b1: [-11.49 -10.62  -2.5 ]
W2:
 [[-43.66]
 [-39.16]
 [ 31.32]] 
b2: [-8.81]

Next, we will load some saved weights from a previous training run. This is so that this notebook remains robust to changes in Tensorflow over time. Different training runs can produce somewhat different results and the discussion below applies to a particular solution. Feel free to re-run the notebook with this cell commented out to see the difference.

Code
W1 = np.array([
    [-8.94,  0.29, 12.89],
    [-0.17, -7.34, 10.79]] )
b1 = np.array([-9.87, -9.28,  1.01])
W2 = np.array([
    [-31.38],
    [-27.86],
    [-32.79]])
b2 = np.array([15.54])
model.get_layer("layer1").set_weights([W1,b1])
model.get_layer("layer2").set_weights([W2,b2])

Predictions

Once you have a trained model, you can then use it to make predictions. Recall that the output of our model is a probability. In this case, the probability of a good roast. To make a decision, one must apply the probability to a threshold. In this case, we will use 0.5

Let’s start by creating input data. The model is expecting one or more examples where examples are in the rows of matrix. In this case, we have two features so the matrix will be (m,2) where m is the number of examples. Recall, we have normalized the input features so we must normalize our test data as well. To make a prediction, you apply the predict method.

Code
X_test = np.array([
    [200,13.9],  # postive example
    [200,17]])   # negative example
X_testn = norm_l(X_test)
predictions = model.predict(X_testn)
print("predictions = \n", predictions)
1/1 [==============================] - 0s 111ms/step
predictions = 
 [[9.63e-01]
 [3.03e-08]]

To convert the probabilities to a decision, we apply a threshold:

Code
yhat = np.zeros_like(predictions)
for i in range(len(predictions)):
    if predictions[i] >= 0.5:
        yhat[i] = 1
    else:
        yhat[i] = 0
print(f"decisions = \n{yhat}")
decisions = 
[[1.]
 [0.]]

This can be accomplished more succinctly:

Code
yhat = (predictions >= 0.5).astype(int)
print(f"decisions = \n{yhat}")
decisions = 
[[1]
 [0]]

Layer Functions

Let’s examine the functions of the units to determine their role in the coffee roasting decision. We will plot the output of each node for all values of the inputs (duration,temp). Each unit is a logistic function whose output can range from zero to one. The shading in the graph represents the output value. > Note: In labs we typically number things starting at zero while the lectures may start with 1.

Code
plt_layer(X,Y.reshape(-1,),W1,b1,norm_l)

The shading shows that each unit is responsible for a different “bad roast” region. unit 0 has larger values when the temperature is too low. unit 1 has larger values when the duration is too short and unit 2 has larger values for bad combinations of time/temp. It is worth noting that the network learned these functions on its own through the process of gradient descent. They are very much the same sort of functions a person might choose to make the same decisions.

The function plot of the final layer is a bit more difficult to visualize. It’s inputs are the output of the first layer. We know that the first layer uses sigmoids so their output range is between zero and one. We can create a 3-D plot that calculates the output for all possible combinations of the three inputs. This is shown below. Above, high output values correspond to ‘bad roast’ area’s. Below, the maximum output is in area’s where the three inputs are small values corresponding to ‘good roast’ area’s.

Code
plt_output_unit(W2,b2)

The final graph shows the whole network in action. The left graph is the raw output of the final layer represented by the blue shading. This is overlaid on the training data represented by the X’s and O’s. The right graph is the output of the network after a decision threshold. The X’s and O’s here correspond to decisions made by the network. The following takes a moment to run

Code
netf= lambda x : model.predict(norm_l(x))
plt_network(X,Y,netf)
1/1 [==============================] - 0s 57ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 13ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 12ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 11ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 12ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 11ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 12ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 7ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 10ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 8ms/step
1/1 [==============================] - 0s 9ms/step
1/1 [==============================] - 0s 8ms/step
7/7 [==============================] - 0s 3ms/step